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Abstract

The dynamical core, which governs the evolution of resolved fluid-dynamical processes, is a critical element of any
atmospheric model. Its governing equations must include all relevant dynamical terms, and the numerical formulae used
to approximate them must be accurate, stable and efficient. This is particularly so in a unified modeling environment in
which the same dynamical core is used for both operational weather prediction and long term climate simulations.

Recent research at the Met Office on unified dynamical core issues is reviewed. Aspects covered include: properties of
various equation sets; vertical coordinates; semi-Lagrangian advection and conservation; trajectory computation and
dynamical equivalence; horizontal and vertical discretization; and coupling of physical parameterizations to a dynamical
core.
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1. Introduction

Numerical meteorological models are run at large scale (either global or regional) primarily for two pur-
poses: (a) operational weather forecasting (numerical weather prediction (NWP)); and (b) long range climate
simulation. Historically, different types of models have been used for each of these applications even within the
same institution. Since the start of numerical meteorology (the first operational forecasts were produced just
over 50 years ago, see e.g. [1] for a review) the subject has matured significantly and the available computing
power has increased dramatically. Additionally, the institutions producing operational forecasts and climate
predictions have come under increasing pressure to make economies of scale and to operate as efficiently as
possible. This has led to the development of two strategies: either community models or, particularly for
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operational centers, unified models. In a unified modeling environment the same model is used for both oper-
ational weather prediction (both global and regional) and long term climate modeling.

The Met Office has had a unified approach to NWP and climate modeling, over a broad range of spatial
and temporal scales, since the early 1990’s [2]. This approach, though economic in terms of maintenance and
transferability of expertise, imposes severe constraints: while small errors in conservation of, for example, the
mass of dry air, are typically insignificant for regional forecasts of a day or two, the cumulative effect in a cli-
mate simulation of several hundred years can be devastating! Additionally, approximations (such as the
hydrostatic approximation — see Section 2.1) that perform well at global and synoptic scales are no longer
applicable at scales of a few kilometers. It is this kilometer scale that many operational centers are increasingly
aspiring to resolve since this is seen as a primary means to obtain accurate prediction of extreme events. Also
the numerics of the model must perform robustly and appropriately accurately with timesteps and spatial
scales, which vary by two orders of magnitude. This is a significant constraint in an operational setting.

The dynamical core, which governs the evolution of resolved fluid-dynamical processes, is a critical element
of any NWP or climate-simulation model. Essential to its performance is the form of the continuous governing
equations and the numerical formulae used to approximate them.

The continuous equations therefore need to be written in a form that allows the numerical approximation
to be accurate but also highly efficient in order to meet operational computational schedules. In addition, the
numerical formulae must be numerically stable for long time integrations. Improving the efficiency of the
dynamical core while maintaining, or even improving, accuracy allows optimization of the model’s resolution
for given computing time. This aspect will be critical to the use of higher and higher resolution models (the
kilometer scale issue discussed above). In addition, the underlying continuous equations possess certain key
conservation properties. If the numerical analogue of these equations is to be accurate it should, as far as pos-
sible, preserve such properties.

Research at the Met Office has therefore been undertaken into the most appropriate form of the underlying
continuous equations, and into the development and exploitation of numerical schemes with improved accu-
racy, robustness and conservation properties. The approach being taken is to continue to improve, where fea-
sible, the existing dynamical core [3,4] while providing a development path for its future replacement.

Other key elements of a unified modeling system are data assimilation and the parameterization of non-
fluid dynamical processes and fluid-dynamical processes that are not resolved by the dynamical core (the
so-called physics parameterizations). Both of these topics are discussed elsewhere in this issue. However, it
is increasingly recognized that, while improvement of both the dynamical core and the physics parameteriza-
tions is necessary, this will only have limited impact on the overall performance of the model unless significant
attention is also paid to how those two elements of the model are coupled together numerically. A focus of
effort within the Met Office has therefore recently been to attempt to understand what the numerical issues
of that coupling are.

This paper is an updated and extended version of one that appeared in the proceedings of an ECMWF
workshop [5]. As in that report, and in the interest of limiting the length of the present paper, references to
the literature are mostly limited to published papers of recent work carried out at the Met Office. Relevant
linkages to the broader literature are however available in the papers cited herein.

The paper is organized as follows. The governing dynamical equations are presented and discussed in Sec-
tion 2, together with issues regarding the vertical coordinate. Various aspects associated with the temporal dis-
cretization of the equations are discussed in Section 3 while those aspects associated with spatial discretization
are discussed in Section 4. The problem of coupling the dynamical core with the physics is aired in Section 5
before conclusions are drawn in Section 6.

2. Governing dynamical equations and vertical coordinates
2.1. Equation sets and their properties
When designing a dynamical core, it is necessary to identify an appropriate set of governing dynamical

equations for subsequent discretization. The very limited computing capability available in the early days
of NWP and climate modeling, together with inefficient explicit time discretization schemes, led to the
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Table 1
Equation sets for dynamical cores using the nomenclature of [7]

Deep Shallow
Nonhydrostatic Nonhydrostatic deep equations Nonhydrostatic shallow
Hydrostatic Quasi-hydrostatic Hydrostatic primitive

adoption of various approximations to the fully compressible fluid-dynamical equations. Today, all models
still make some kind of approximation to these equations, albeit far fewer than in the past. For example, most
current global models are based on the hydrostatic primitive equations. The advantage of this is that verti-
cally-propagating acoustic oscillations are absent via the hydrostatic assumption. This avoids the very restric-
tive timestep of an explicit time discretization of the acoustic modes. However, it invalidates the equations for
many mesoscale flows. Additionally the shallow-atmosphere assumption is made, which is based on simple
scaling arguments and implies omitting various Coriolis and metric terms for dynamical consistency. So what
equation set should one use for a dynamical core that is applicable at all scales?

It is highly desirable, if not essential, that the equations be dynamically consistent, i.e. that they possess
conservation principles for energy, angular momentum and potential vorticity, and have a Lagrangian form
of the momentum equation. Four such models are identified in [6,7], which correspond to whether approxi-
mations of hydrostatic and shallow-atmosphere type are, or are not, individually made (see Table 1). The case
for using the deep-atmosphere equations, i.e. not making the shallow-atmosphere approximation, primarily
amounts to the desirability of retaining a complete representation of the Coriolis force, including the
2Qcos ¢ terms, where Q is Earth’s rotation rate and ¢ is latitude. In [7], it is also shown that: the spheri-
cal-geopotential approximation (which is made in all terrestrial atmospheric models of which we are aware)
requires neglect of latitudinal variation of apparent gravity; making the shallow-atmosphere approximation
implies that apparent gravity should not vary as a function of r, distance from the Earth’s center; and, in con-
tradistinction, the deep-atmosphere equations require apparent gravity to vary as 1/72. Additionally, more
recent work (A.A. White 2006 private communication) has shown that the non-Euclidean nature of the shal-
low-atmosphere approximation significantly complicates, at least at a conceptual level, the implementation of
the semi-Lagrangian scheme (see Section 3 herein for discussion of some other aspects of the semi-Lagrangian
scheme).

The most complete equation set of the quartet considered in [6,7] is the deep nonhydrostatic one. To facil-
itate later discussion, it is convenient to state this equation set here in the (4, ¢, s) coordinate system, where A
and ¢ are longitude and latitude, respectively, and s is a generalized vertical coordinate that is any monotonic
function of r. Setting s = r then gives the equations in standard spherical polar coordinates (4, ¢, r). Following
the derivation given in [8], the resulting dry equations for a rotating spherical deep atmosphere are, in stan-
dard notation,

I;‘-W+Ljv—290sin¢+29wcos¢+lmts¢<2};—§;2j2§) =F", (1)
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p = pRT, (6)
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(F*,F°,F") and F’ are any parameterized source/sink terms, g = d®/dr is the gravitational acceleration,
@ = @(r) being the geopotential, R is the gas constant, ¢, is the specific heat at constant pressure, D is a pseu-
do-divergence, and partial derivatives with respect to 4, ¢ and ¢ are evaluated holding s constant. Egs. (1)—(8)
are respectively: the three components of the momentum equation; the continuity equation for density p; the
thermodynamic equation for potential temperature 0; the equation of state; the definition of potential temper-
ature in terms of absolute temperature 7" and pressure p; and the definition of the wind components u, v, w in
(4, ¢,r) coordinates.

For realistic atmospheric models, various modifications to the above equation set, commensurate with the
envisaged application, are required to incorporate moisture and other physical and chemical species. However,
the mixing ratios of these various species are small in the Earth’s atmosphere. Therefore, their inclusion results
in only relatively minor changes to terms involving thermodynamic variables, together with the addition of
various transport equations of the form

DX X

Dr = F*, (12)
where X represents any of several mixing ratios of moisture in various phases and of other included quantities
such as aerosols or chemical species.

The strategy for the dynamical core described in [3] is to avoid unnecessary approximations. Accordingly,
the above fully compressible, nonhydrostatic equations have been adopted. The vertical acceleration term is
retained in (3) (it is dropped in the quasi-hydrostatic equation set, and in the hydrostatic primitive equation set
— see Table 1). Furthermore, the shallow atmosphere approximation (a feature of both the nonhydrostatic
shallow and the hydrostatic primitive equation sets — again see Table 1) is not made, thereby retaining the
2Qcos ¢ Coriolis terms together with all metric terms in (1)—(3), while avoiding setting r to the Earth’s radius
where it appears as a metric factor in various remaining terms. The Met Office currently uses the dynamical
core described in [3] as the cornerstone of its Unified Model, which is used for NWP and climate applications
over a broad range of spatial scales, from global to mesoscale. It is believed to be the only deep-atmosphere
nonhydrostatic dynamical core used to date for operational modeling of the Earth’s atmosphere.

Note that although the shallow-atmosphere approximation is not made in this dynamical core, the spher-
ical geopotential approximation, which in particular neglects the explicit representation of the Earth’s equa-
torial bulge, nevertheless remains. Because the Earth’s oblateness is of order 0.3%, its neglect is generally
believed to be unimportant. A weakness in this argument is that although the Earth’s oblateness is small,
its impact could conceivably be much larger due to systematic cumulative effects, particularly for climate sim-
ulations. The issue thus arises as to the feasibility of putting the well-foundedness of this approximation to the
test by relaxing the spherical geopotential approximation in a future Met Office dynamical core. One way of
achieving this is to represent geopotential surfaces as oblate spheroids. Recent work by A.A. White (personal
communication) indicates that this could be achieved within the Met Office’s dynamical core without incurring
prohibitive computational cost.

Normal-mode analysis provides further insight into the properties and validity of governing equation sets,
e.g. by identifying which terms should, for computational stability, be treated implicitly in time. Until recently,
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such studies made the shallow-atmosphere approximation and neglected the vertical variation of gravity.
However these two constraints are relaxed in [9,10]. For terrestrial parameters, neither constraint has signif-
icant impact on the spatial form of the energetically significant components of most normal modes, with only
slight changes (less than 1%) in frequency [9]. However, relaxing the shallow-atmosphere approximation does
lead to significant changes in the tropical structure of long-zonal-wavelength internal acoustic modes, primar-
ily due to the presence of the 2Q cos ¢ Coriolis terms — this could be important in the presence of forcing, e.g.
due to tropical convection. Relaxing the shallow-atmosphere approximation also leads to nonzero vertical
velocity and potential temperature fields for external acoustic and Rossby modes; in contrast, these fields
are identically zero when the shallow-atmosphere approximation is made. Inclusion of realistic vertical vari-
ation in the gravitational acceleration leads to a small but systematic decrease in the magnitude of normal
mode frequencies, with the largest differences found being less than 1.5%.

Further insight into the role of the 2Q cos ¢ terms, associated with the horizontal component of the Earth’s
rotation vector and a deep atmosphere, is provided in [10] by deriving normal modes for an f~F plane, where
f =2Qsin¢ and F = 2Qcos ¢ are both set constant. A particularly surprising result is that the inclusion of
the F terms gives rise, in planar geometry with rigid lower and upper boundaries, to an additional branch
to the normal mode dispersion relation. The additional modes are inertial in character, have frequency very
close to f, and have extremely strong vertical tilt. These modes, and the importance of the 2Qcos ¢ terms for
dynamical cores, are further examined in [11-14].

For a finite-difference model to represent well the behaviour of the free atmosphere, it must capture accu-
rately the structures of the analytic normal modes. Therefore, the structures of analytic normal modes can
have implications for the choice of prognostic variables and grid staggering. In the absence of other consid-
erations, it is concluded in [9] that density and temperature should be analytically eliminated in favour of pres-
sure and potential temperature as the prognostic thermodynamic variables, since the structure of density and
temperature for high vertical wavenumbers would not be accurately captured on either the horizontal velocity
levels or the vertical velocity levels. Also, potential temperature and vertical velocity should be staggered in the
vertical with respect to the other dynamic prognostic variables, the so-called Charney—Phillips grid.

Following up on this work, a broad range of vertical configurations with different choices of vertical grid
staggerings, different choices of prognostic thermodynamic variables, and different coordinate systems, are
examined in [15]. Performance is categorized according to a configuration’s ability to discretely represent
the structure and frequencies of the analytic normal modes of the linearized compressible Euler equations,
the categories being: optimal; near optimal; existence of a single zero-frequency computational mode; exis-
tence of inertial frequency decoupled modes; and existence of other, serious, miscellaneous deficiencies. It is
concluded that: (a) heuristic arguments, such as the amount of averaging and coarse differencing, and the
arguments given in [9], and summarized above, are useful guides to whether a particular configuration is opti-
mal or not; (b) the number of degrees of freedom in the discretization is an accurate guide to the existence of
computational modes; (c) there is only minor sensitivity to whether equations for thermodynamic variables are
discretized in advective or flux form; and (d) an accurate representation of acoustic modes is a prerequisite for
accurate representation of inertia-gravity modes which, in turn, is a prerequisite for accurate representation of
Rossby modes.

Among the height-coordinate configurations examined in [15], one in particular stands out as being par-
ticularly good, since it not only has significantly better wave dispersion properties than all the others, but
also has no computational modes. This configuration is in fact that argued for in [9] — see above. In the
notation of [15], it corresponds to (w8, uvp) meaning that potential temperature 6 and pressure p are the
prognostic thermodynamic variables, and p and the horizontal wind components (u,v) are vertically stag-
gered with respect to the vertical velocity component, w, and 0. The mass variable, density p, is not a
prognostic variable for this configuration. As pointed out in [16], this makes it difficult to formulate an
inherently mass-conserving numerical scheme, a highly desirable property particularly for models used
for climate simulation. The alternative configuration (w,uvp) facilitates mass conservation, has no com-
putational modes and well represents acoustic and inertio-gravity modes, but is sub-optimal since it has
the undesirable property of significantly retarding higher internal Rossby modes. This leads to the appar-
ent dilemma of either giving up inherent mass conservation, or accepting sub-optimal performance. What
to do? In [16], it is shown that the performance of the sub-optimal (w0, uvp) configuration can be made
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optimal by an appropriate modification of the discretization of the pressure gradient term, resulting in a
mass-conserving optimal configuration that resolves this dilemma.

The principal tool used to develop approximate equation sets, and to assess their validity as a function of
flow regime, has been scale analysis which has proven quite subtle to apply. In [17], it is shown that normal-
mode analysis provides a useful complementary tool for assessing the validity of various anelastic, hydrostatic
and pseudo-incompressible equation sets for both small- and large-scale flows, and leads to the following
conclusions. While of key importance for small-scale theoretical studies and process modeling, the anelastic
equations are not recommended for either operational NWP or climate simulation at any scale. The
pseudo-incompressible set [18] appears to be viable for NWP, but only at short horizontal scales since, at large
horizontal scales, the frequencies of deep gravity modes are distorted. For global nonhydrostatic modeling,
only the fully compressible equations appear suitable. Advances in numerical techniques in the past decade
or so (e.g. [19,3]), allow these to be integrated in a computationally efficient manner. Note however that
stability with implicit and semi-implicit timestepping and long timesteps is achieved by spuriously retarding
the fast-propagating modes responsible for the timestep limitations of explicit schemes. Should fast-propagat-
ing oscillations carry non-negligible energy for a given application, then the timestep would have to be
shortened in order to properly represent the physics, and the timestep advantage over an explicit treatment
might then be lost.

2.2. Vertical coordinates

Once an equation set for a dynamical core has been chosen, the next issue to be addressed is a suitable
choice of vertical coordinate. The hydrostatic primitive equations were reviewed and analyzed in [20] using
a generalized vertical coordinate, defined to be any variable which is a single-valued monotonic function of
geometric height. This influential review has proven to be a valuable reference, much cited by atmospheric
modellers, but is not directly applicable to nonhydrostatic equation sets nor to deep-atmosphere ones. Con-
sequently, the analysis of [20] is extended in [8] by: relaxing the hydrostatic and shallow-atmosphere assump-
tions; no longer constraining the upper boundary to be a coordinate surface, to permit more general upper
boundary conditions; and, in addition to examining the energetics, also examining axial angular momentum
conservation to determine its sensitivity to the choice of upper boundary condition. This leads to a formula-
tion, summarized in (1)—(11), of the deep-atmosphere nonhydrostatic Euler equations using a generalized ver-
tical coordinate. It includes, as a special case, the formulation of the Met Office’s new dynamical core [3]in a
height-based terrain-following coordinate.

It is found for a generalized vertical coordinate that the implied principles of energy and axial angular
momentum conservation (in the absence of zonal mechanical forcing and mountain torque) depend on the
form of the upper boundary. In particular, for a modeled atmosphere of finite extent, global energy conser-
vation is only obtained for a rigid lid, fixed in space and time. To additionally conserve global axial angular
momentum, the height of the lid cannot vary with longitude. This result has been shown to be independent of
whether the atmosphere is shallow or deep, and hydrostatic or nonhydrostatic. In particular, models that
impose a material surface with constant (non-zero) pressure at the upper boundary, do not conserve total
energy and axial angular momentum, although they may possess an energy-like invariant (see Section 2.3).
This is consistent with, and generalizes, the analysis in [20] for a shallow hydrostatic atmosphere. There it
was demonstrated that total energy is conserved for a rigid lid in height coordinates. However it is not gen-
erally conserved for an isobaric lid in pressure coordinates, but it was shown that a pseudo-energy invariant
exists instead.

Today’s atmospheric models are usually formulated in terms of terrain-following coordinates. [However,
such coordinate systems are not without their problems particularly at high resolution near steep mountains.]
For shallow-atmosphere hydrostatic models it is natural and convenient to use pressure as the vertical coor-
dinate (i.e. an isobaric coordinate), which has the advantage of making the continuity equation a diagnostic
relation. A family of “terrain-following hydrostatic-pressure” coordinates, also referred to as mass coordi-
nates, is introduced in [21]. This approach is valid for nonhydrostatic shallow atmospheres, retains the acous-
tic modes, and leads to a diagnostic continuity equation with no need for any approximations other than those
of a shallow atmosphere. A simple example is
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is “hydrostatic pressure”, z is geometric height, x is the horizontal position vector, and 77 is constant. For a
hydrostatic shallow atmosphere, the 75 coordinate (13) reduces to the traditional sigma-coordinate
o= (p—ps)/(ps — pr), since 7 reduces to total pressure p in the hydrostatic limit.

Using the analysis of [8], it is shown in [22] that the terrain-following coordinate # of [21], based on hydro-
static pressure 7 for the shallow-atmosphere Euler equations, can be generalized to the deep-atmosphere Euler
equations. For a shallow atmosphere, the terrain-following coordinate of [21] can be interpreted equivalently
as being either based on “‘hydrostatic pressure” or on mass. However the generalization to deep atmospheres
is such that the analogous quantity is based on mass and not on pressure. This is because, for a deep atmo-
sphere, the cross-sectional areal element increases with height, whereas it is constant for a shallow atmosphere,
resulting in different volume elements. A consequent benefit of the mass-based generalization given in [22] of
the coordinate of [21] is that an existing (shallow-atmosphere) hydrostatic primitive-equations model which
uses a pressure-based terrain-following vertical coordinate, could be modified for nonhydrostatic deep-atmo-
sphere applications, without the need to substantially change the scientific and computing infrastructure in
which it is embedded.

2.3. Energetics

As mentioned above, in the absence of external momentum and thermal forcing and net surface torque, it is
shown in [8] that deep (and shallow) atmospheres of finite extent are only guaranteed to globally conserve
energy and axial angular momentum if a rigid lid upper boundary condition is applied. Otherwise energy is
not conserved. Elastic isobaric upper lids (where the lid is a specified isobaric, i.e. constant pressure, surface)
are however popular and have merit. The presence of global invariants provides a constraint on the system
which can be useful when designing effective numerical schemes. An energy-like invariant is known to exist
for shallow hydrostatic atmospheres with an elastic isobaric lid. In [23], a generalization of this invariant is
derived. It is (E + p;/p), where p; = p;(4, ¢) is the pressure at the lid, and p is density. This energy-like invari-
ant: (a) is valid independently of whether the atmosphere is assumed deep or shallow, and hydrostatic or non-
hydrostatic; and (b) subsumes previous shallow-atmosphere energy-like invariants in the atmospheric
literature. Note that while pE + p; is globally conserved (in the sense that its volume integral is an invariant
of the system) with an elastic isobaric lid, the true total energy pE of the system is not conserved. The difference
between the two, viz. the contribution of p;(4, ¢), represents the work done by the stationary pressure applied
at the upper surface as the height of that surface changes.

An important practical issue, raised but left unanswered in [23], is whether it is better to impose a rigid or an
elastic lid for an atmosphere of finite extent. When the atmosphere undergoes heating, is it better to consider
that this is done at constant pressure or at constant volume? This remains a moot point.

3. Temporal discretization of the dynamical equations

When forecasting the state of the atmosphere, it is essential to use efficient discretization methods. The sim-
plest time discretizations, e.g. the well-known leapfrog time scheme used in the early days of atmospheric mod-
eling, are explicit. Their timestep is restricted, for reasons of computational stability, by the speed of the
fastest-propagating modes. Normal mode analysis — see discussion in Section 2.1 — reveals that the fastest
modes of propagation are acoustic waves and horizontally propagating external gravity waves, with propaga-
tion speeds of the order of 350 m s~ !. Although these modes carry little energy, they are the ones that most
seriously restrict the timestep length, and hence computational efficiency. The restrictions are particularly
severe for global finite-difference or finite-element methods that use a latitude-longitude grid, since the
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convergence of the meridians at the poles results in very small meshlengths, and consequently in very small
timesteps.

The essence of the semi-implicit (SI) method — see [24] for a historical review of its development — is to treat
in a time-implicit manner the linear part of the terms responsible for the fastest-propagating modes (as iden-
tified by normal-mode analysis), and to treat the other terms (including nonlinear perturbations) in a time-
explicit manner. This results in a retardation of the fastest-propagating modes, and also in the overhead of
solving an elliptic-boundary-value problem. In practice it is found that this overhead is small compared with
the efficiency advantage gained by being able to stably integrate with long timesteps, with negligible loss of
accuracy (since the fastest-propagating modes generally carry little energy). This has resulted in the wide-
spread adoption of the SI scheme in atmospheric (and other) models, it being a particularly attractive
approach for stiff systems. Recently — see Section 3.2 — an alternative to the SI scheme, the regularized
time-staggered scheme, has been proposed and analyzed.

Stability analysis shows — see reviews of [25,24] — that applying an implicit or SI treatment of fast-propa-
gating modes addresses the timestep constraint of these modes. However, if it is coupled with an Eulerian
treatment of advection, then the local Courant number (UA¢/Ax) is constrained to be somewhat less than
unity. [For a latitude-longitude mesh, this is again particularly restrictive in polar regions due to the conver-
gence of the meridians.] However, analysis also shows that the temporal truncation error is generally still
much smaller than the spatial truncation error [26], at least for large- and synoptic-scale flows. The timestep
can therefore be increased with negligible loss of accuracy provided that a stable and accurate method to han-
dle advection with long timesteps can be found. This motivates — see [26,27] and the review of [25] — the use of
a semi-Lagrangian treatment of advection, which is stable for Courant numbers much greater than unity.
Coupling a semi-Lagrangian treatment of advection with a SI treatment of the fastest-propagating modes then
results in a scheme where the timestep can be chosen on the basis of accuracy rather than being constrained by
stability. Semi-implicit semi-Lagrangian methods are now used in many atmospheric models, e.g. [3,19,28,29].

3.1. Semi-Lagrangian discretization

3.1.1. Semi-Lagrangian advection and conservation

Semi-Lagrangian (SL) schemes are widely used for the advection component of many modern operational
atmospheric models due to their increased efficiency and stability compared to Eulerian schemes. However, a
common disadvantage of interpolating SL schemes is the lack of mass and tracer conservation. Though mass
conservation may not be critical for short period NWP simulations, it is very important for long period sim-
ulations such as those of climate studies. Over a long simulation period, the total mass can drift significantly if
no correction is applied. Hence, SL schemes which are inherently mass conserving are desirable. The challenge
is to not only achieve inherent conservation, but to do so while remaining computationally efficient compared
with a traditional interpolating SL scheme. This motivated the development of the semi-Lagrangian inher-
ently-conserving and efficient (SLICE) algorithm [30].

There are two ingredients. The first is to rewrite the Eulerian flux form

0
L4V (pu) =0, (15)
ot

where p is a scalar field transported by velocity u, in a finite-volume Lagrangian form
D
— dr=0 16
Dt J,,"” ’ (16)

where 0V is a fluid parcel or Lagrangian control volume. This equation is then integrated in time to obtain
M= M7 (17)

where M"*! is its mass at time (n + 1)A¢ centered on the arrival location x,, and M’ its mass at time nAt cen-
tered on the departure location x4. The second, inspired by cascade interpolation [31], is the use of a cascade
remapping strategy to very efficiently decompose a multi-dimensional remapping problem (from Eulerian
control volumes to Lagrangian ones, or vice-versa) into a number of much-simpler one-dimensional (1D)
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remapping problems — see [30] for details. An important property of cascade remapping is that it preserves
characteristics of the flow, thus minimizing splitting errors. Overall, it is found that in addition to exactly con-
serving mass, the SLICE algorithm is also competitive with standard non-conserving semi-Lagrangian
schemes from the viewpoints of both computational efficiency and accuracy.

This algorithm [30], in planar geometry, is extended to spherical geometry in [32]. It has no restriction on
Courant numbers and again achieves comparable, or better accuracy, as standard non-conserving and other
published conserving SL schemes over the sphere. The algorithmic complexity has been a major design con-
straint with the aim of achieving this extension in a straightforward and flexible way without a major compu-
tational overhead.

The extension of the SLICE algorithm to allow monotonicity (and positive-definiteness) to be efficiently
imposed in both planar and spherical geometry is described in [33]. Monotonicity and positive-definiteness
are essential for algorithms that transport physical and chemical atmospheric species. This extension operates
by first identifying where monotonicity is violated (the detection stage), and by then locally reducing the order
of the piecewise polynomial used in the remapping algorithm until monotonicity is regained (the reduction
stage). A global minimum and/or a global maximum can similarly be imposed and positive-definiteness is
achieved by setting the global minimum to be zero. The resulting monotonicity scheme is more selective
and less damping in the smooth part of the solution than other filters.

For the SLICE schemes discussed above, the 1D remapping is accomplished using a novel piecewise cubic
method (PCM) [30]. A somewhat simpler and more efficient 1D remapping algorithm, termed the parabolic
spline method (PSM), is described in [34]. Of all piecewise parabolic functions that satisfy a given mass dis-
tribution, it is shown that PSM yields an optimal reconstruction since it possesses the minimum norm (or cur-
vature) and the best approximation properties. A truncation error analysis shows that although it has a similar
truncation error in the converged limit as that of the widely used piecewise parabolic method (PPM - see [35])
for infinitely differentiable functions, PSM is more accurate than PPM for problems with slow spectral decay,
such as those encountered in typical atmospheric modeling applications. Additionally, an operation count
shows PSM to be 60% more efficient than PPM.

Ilustrative comparative results for the challenging, non-smooth, deformational problem on the sphere — see
[33] for its definition and parameters — are displayed in Fig. 1, using SLICE with PSM remapping, without
(Fig. 1a) and with (Fig. 1c) monotonicity, and using a conventional bicubic non-conserving SL algorithm
(Fig. 1b). The exact result is displayed in Fig. 1d for comparison.

For further examples of applications of SLICE in multiple dimensions see [36,37].

3.1.2. Trajectories and dynamical equivalence
A crucial component of any SL scheme is the computation of the trajectories (or displacement vector) via
numerical approximation of Dx/D¢ = u(x, ¢), where x is now the three-dimensional (3D) position vector. This
computation has an important influence on the stability and accuracy of the discretization of the governing
equations. It is shown by [38] that the departure-point and momentum equations, given respectively by
Dx Du
D7 = u(x,t), D = F, (18)

where F is the local force per unit mass, analytically convey the same information as the departure-point,
angular momentum and scalar-product equations

g:u(x,t), D(x x u) — xxF, D(x - u)
D¢ D¢ D¢
White [38] refers to this property as dynamical equivalence.

The conditions under which this also holds for discrete forms of these equation sets are analyzed in [38,39].
For time-centered discretizations, once a rule has been chosen for the approximation of averages along the
trajectories of vector and scalar products, dynamical equivalence implies a particular discrete form of the
departure-point equation [38]. For time-decentered discretizations, two types of discretization of the depar-
ture-point equation are identified in [39] which preserve dynamical equivalence: some existing discretizations
are then found to be approximations to them. It is also shown how to incorporate physical forcings and/or

=u’ +x-F. (19)
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Fig. 1. Solutions, projected on a tangent plane, after 64 timesteps for non-smooth deformational flow on a sphere — see [33] for definition
of problem and parameters: (a) SLICE (PSM), without monotonicity; (b) bicubic interpolating SL, without monotonicity; (c) SLICE
(PSM), with monotonicity; (d) analytic.

predictor—corrector dynamics into the formulation. Furthermore, two simple model problems (for solid-body
rotation and wave motion) are used to provide further insight into the accuracy and stability properties of
various departure-point schemes, including: dynamically-equivalent schemes; approximations to these; and
several existing schemes. Cordero et al. [40] further analyzed the impact of the trajectory computation on
numerical stability — see Section 4.2.2 herein for a summary of this work.

3.2. Regularized time-staggered scheme

A recently proposed alternative to the SI scheme, which preserves unconditional stability of propagating
gravity modes, is a time-staggered discretization combined with a regularization of the continuous governing
shallow-water equations [41]. In this approach, a “regularized” pressure is determined from the pressure field
by solving an elliptic-boundary-value problem, and the regularized pressure is used in place of the pressure in
the momentum equation. By time staggering the momentum variables with respect to the pressure variable
within a Lagrangian framework, the momentum and continuity equations can then be time discretized in
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an explicit leapfrog manner. Just as for the SI scheme, the need to solve an elliptic-boundary-value problem is
the overhead incurred in order to stably integrate with much larger timesteps than those permitted by explicit
time schemes.

To reduce to its essence the formulation of a time-staggered discretization to the continuous regularized
equations, consider the linear 1D gravity wave equations

u, = —gh,, (20)
h, = —Hu,, (21)
where g is the constant acceleration due to gravity, and A(x, ¢) is the perturbation fluid depth about the con-

stant mean fluid surface height H of a resting basic state. The first step, before discretization, is to replace the
continuous momentum equation (20) by the regularized momentum equation

U= _gilxa (22)
where % plays the role of regularized pressure. It satisfies the Helmholtz equation
o\~
1+ —o>—|h=nh 23
(14755 )i=n, 23)

where o is an arbitrary smoothing length scale, and ? is an additional smoothing parameter. The second step,
after regularization, is to discretize (21)—(23) in a time-staggered manner as
1

hn+% _ hnfj
S vEE —Hu’, (24)
Lo g2 O\ i = greh 25
A N ’ (25)
n+l _ on ~
714 AL u = —gh£+%7 (26)

where u is defined at integer time levels, 4 and h at half-integer time levels, and derivatives are evaluated using,
for example, centered finite differences or the spectral method. Thus, given the state vector (h"*l/ 27u”), the
solution is advanced in time by successively applying (24)—(26) to obtain the new state vector (A" y+1).

The effect of the regularization on the time-continuous equations is governed by its two arbitrary parameters
o and y. Returning now to the more general case of the rotating 2D shallow-water equations with orography,
by examining linear perturbations of the time-continuous equations, the forced response of the time-contin-
uous regularized equations can be shown to be close to that of the unregularized equations provided y < 1
and o < Ly, where Ly = +/gH/f is the Rossby radius of deformation [41]. Furthermore, and as expected,
the free response (the inertia-gravity waves) of the time-continuous regularized equations approaches that
of the unregularized ones as o« — 0 and y — 0. For non-zero values of o, the inertia-gravity waves are increas-
ingly retarded as their wavenumber increases (reminiscent of the effect on discrete inertia-gravity waves of the
SI scheme). Increasing y away from zero also retards the inertia-gravity waves but the effect, in isolation from
a, is independent of the wavenumber.

To determine appropriate values for a and y, the linear free and forced responses of the time-staggered
scheme, applied to the rotating 2D regularized shallow-water equations with orography, are determined in
[41]. It is found that numerical stability of the free solution of this scheme requires

o= \/g_HAt. (27)

2

For accuracy, « should be as small as possible (recall that o = 0 for the original unregularized equations), thus
the optimal choice for the smoothing length is o = \/gH At /2 since increasing o beyond this value unnecessarily
reduces accuracy. Furthermore, comparing with the corresponding result for the SI scheme, it is found that if o
assumes its optimal value and the choice y = fAz/2 is made then, surprisingly, the two schemes give exactly the
same linear numerical dispersion relation for the fiee response, i.e. for the inertia-gravity waves. Additionally,
the regularized time-staggered discretization yields a similar result to the analytic forced response (which is
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exactly captured by the SI discretization) provided (oc/LR)2 <1 and y* < 1. With « = /gHAt/2 and
y = fAt/2, then a/Lg = y. The two conditions for validity then reduce to the same requirement, namely that
the timestep should be chosen such that | fA7/2| < 1.

Although this latter condition is usually respected for models of the Earth’s atmosphere, it is nevertheless
a disadvantage of the time-staggered discretization of the regularized equations with respect to the SI discret-
ization of the unregularized equations. A further, serious, disadvantage is that an initially balanced state of
the atmosphere (i.e. a state for which V - (Du/D¢) vanishes) is not retained, something that is particularly
important for data assimilation. These two deficiencies are however addressed in [42], where a revised reg-
ularization procedure is introduced that takes into account the forcing terms in the equations, and only
impacts the unbalanced components of the flow while leaving balanced components untouched. Linear anal-
ysis of the discrete equations shows that the solutions are neutrally stable provided the regularization param-
eter, o, again satisfies (27). The optimal choice, in terms of accuracy and computational efficiency for the
discrete equations, is to again choose equality in (27) so that o takes its smallest value permitted for uncon-
ditional stability. With this choice for o, used now with y =0, it is found that not only is the free linear
response of the time-staggered leapfrog discretization of the regularized equations identical to that of the
SI discretization of the unregularized equations, as it is for the original regularized formulation, but so also
is the forced linear response.

This linear equivalence, which holds in the absence of advection, suggests that perhaps the time-stag-
gered leapfrog discretization of the equations, with the new regularization, could be used as the basis
for a viable alternative to the SI scheme by coupling the time-staggered leapfrog discretization of the reg-
ularized equations with a semi-Lagrangian treatment of advection. If so, a potential side benefit would be
the potential to simplify and improve the physics/dynamics coupling (see Section 5 for a discussion of
related issues). Such a time-staggered semi-Lagrangian (TSSL) discretization of the rotating regularized
shallow-water equations, spatially discretized on a staggered Arakawa C grid, is therefore proposed and
analyzed in [43] (a similar but alternative discretization is given in [44]). The discretization of [43] is sec-
ond-order accurate in both time and space. A further aspect, crucial for stability reasons, is that the dis-
cretizations of the kinematic and momentum equations are tightly, and implicitly, coupled when advancing
momentum from one timestep to the next. Linear analysis, that now includes uniform advection in the
basic state, shows that unconditional stability is achieved provided the regularization parameter « is chosen
to have the same value as in the non-advective analysis of [42]. An example application, in the absence of
orographic forcing, of the scheme to a fully nonlinear case of two interacting vortices indicates the practical
potential of this spatio-temporal discretization [43]. Figs. 2 and 3 (S. Reich, personal communication) show
the time evolution, in an f-plane shallow-water model, of the potential vorticity due to a pair of interacting
vortices. Details of the simulation are given in [43]. Fig. 2 shows the result using the regularized time-stag-
gered discretization with a timestep of 20 min whereas Fig. 3 shows the same results but obtained, in the
absence of regularization, using a timestep of only 1 min. As can be seen from the two figures, the two
simulations produce very similar results for the PV evolution. Comparison of the regularized, 20 min time-
step simulation with a comparable SISL simulation is presented in [43].

An important lesson to learn from the history of the development of semi-implicit semi-Lagrangian (SISL)
schemes is that it is important to thoroughly understand not only the free response but also the forced response.
The 2D analysis of [45] explained, after the fact, the unexpected noise problems observed in full 3D models in the
presence of orography, and they also proposed what has become a widely used solution, namely temporal off-
centering. With the benefit of hindsight, this problem, and its solution, could have been anticipated had an
appropriate analysis of the forced response of the shallow-water equations been performed before the develop-
ment of full 3D SISL models. It is therefore a natural and necessary next step in the development of TSSL
schemes to analyze whether spurious orographic resonance is possible, and this is done in [46].

It is found that the TSSL scheme also shares with the SISL discretization the possibility of spurious oro-
graphic resonance. Additionally, such resonance occurs in the TSSL case at a Courant number half as small as
in the SISL case. However, a procedure, akin to the off-centering usually employed in the SISL scheme, has
been proposed for the TSSL scheme. This consists of adding a term, proportional to the discrete time tendency
of the unregularized geopotential field, to the regularization equation. The constant of proportionality, e,
determines how much off-centering is applied. Analysis shows that the off-centered TSSL scheme then remains
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Fig. 2. Time-staggered semi-Lagrangian computation of time evolution of PV field with regularization and a timestep of 20 min — see [43]
for definition of problem and parameters.
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Fig. 3. Same as Fig. 2 except without regularization and the timestep is 1 min.

unconditionally stable (with the same appropriate choice for the regularization parameter) provided ¢ > 0.
Additionally, and crucially, resonance cannot occur provided ¢ is chosen to be strictly greater than zero. Also,
there is no computational mode.

How to extend the TSSL scheme to the fully-compressible equations to not only handle the propagation of
gravity modes, as in [43], but also the propagation of acoustic modes, is outlined in [47] and analyzed using

normal modes.
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4. Spatial discretization of the dynamical equations
4.1. Horizontal discretization

There are many numerical methods for spatial discretization and most have been, or are used, in opera-
tional NWP and climate models. These include the spectral method, finite-element methods, finite-volume
methods and the closely related finite-difference method [48]. Within the Met Office, finite-difference methods
have always been the preferred approach, albeit with some influence from the finite volume approach. Even
within that limitation, though, there are many ways of gridding the sphere, including the use of triangles and
more quasi-uniform grids such as the conformal cubic grid. However, certainly the simplest approach, yet
(with the advent of the semi-Lagrangian scheme) still a competitive one, is a quadrilateral mapping of the
sphere based on a latitude-longitude grid (this degenerates to a triangular mapping at the poles). This is
the approach currently used in the unified model of the Met Office (and likely to remain so for the immediate
future).

4.1.1. Variable horizontal resolution

Like many meteorological organizations, regional forecasting and climate applications at the Met Office
currently use a non-interacting or one-way nesting strategy, whereby a lower-resolution configuration of its
model provides the lateral boundary conditions for a higher-resolution configuration run over a region of
interest. It is well known — e.g. [49] — that there are a number of theoretical and practical problems associated
with this approach. It is argued in [28] that it is preferable to use a fully-interacting variable-resolution
(stretched grid) strategy, whereby a single global model is integrated with resolution focused on a uniform-res-
olution sub-domain of a rotated latitude-longitude mesh. Following the successful implementation of this
strategy for operational NWP at the Canadian Meteorological Centre [28,50], and its use for regional climate
simulation [51], the formulation of the Met Office’s dynamical core has been generalized to variable resolution
— see [4] for details. Implementation of this generalization is currently underway at the Joint Centre for Meso-
scale Meteorology at Reading University.

4.1.2. Conservation and Rossby-mode propagation on the sphere

Spatial discretizations of the linearized shallow-water equations on a spherical C-grid are analyzed in [52].
Constraints are derived therein that ensure conservation of mass, angular momentum and energy, and gener-
alize published results (e.g. [53]) to the case of non-uniform and rotated grids (but restricted to the linearized
equations). Grids with either meridional velocity v, or azimuthal velocity u and free-surface height /, stored at
the poles are considered. Energy conservation is shown to be problematic for grids with « and / stored at the
poles. It is also found that an inappropriate averaging of the Coriolis terms leads to a misrepresentation of the
Rossby modes with shortest meridional scale. The appropriate averaging is shown to not only address this
problem but to be compatible with the constraints required for conservation.

4.2. Vertical discretization

4.2.1. Analysis of a new finite-element vertical discretization

The choice of vertical discretization method is an important aspect of designing a dynamical core, the most
popular being the use of low-order finite differences with a variety of vertical staggerings of dependent vari-
ables. Recently, a new high-order finite-element (FE) vertical discretization scheme has been proposed for a
hydrostatic primitive equation model using a terrain-following pressure-based vertical coordinate and an
unstaggered grid [54]. This motivated its mathematical analysis in [55].

The essence of the scheme is an accurate FE algorithm for evaluating vertical integrals using either linear or
cubic splines, respectively denoted “linear FE” and “cubic FE” in [54]. They also describe and evaluate two
further methods: a finite-difference based scheme; and a ““‘cubic collocation’ scheme. The cubic collocation
scheme first constructs a cubic-spline interpolant of the integrand and then analytically integrates it. It is
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observed in [54] that: (a) the empirically estimated truncation errors of the linear FE and cubic collocation
schemes are both of fourth order; (b) the measured errors of these two schemes are not only of the same order
but identical (to the two significant figures given); and (c) the empirically estimated truncation error of the
cubic FE scheme is of eighth order. In addition to explaining these results, the analysis of [55] shows that:
(d) the truncation errors of the linear FE and cubic FE schemes applied to the integral form of the equations
are respectively four and eight times smaller than those obtained by applying FE’s to the differential form; and
(e) the cubic FE scheme is formally equivalent for uniform resolution to a new ‘“‘heptic collocation” scheme, in
which a seventh-order spline is analytically integrated.

4.2.2. Discrete normal-mode analysis

Normal modes are fundamental solutions of linearizations of equation sets and are useful in a number of
contexts. As mentioned above, they can be used to assess the validity of various equation sets as a function of
scale [17], and also to guide the choice of prognostic variables and vertical grid staggering [9]. In [4], spatially
continuous normal modes are used to examine the stability properties of the dynamical core of [3] by solving a
derived polynomial dispersion relation. Such an approach focuses on the stability characteristics of the time
discretization and has the virtue of simplicity, but neglects the impact of the spatial discretization, including
non-uniform resolution, and the application of boundary conditions — see [56] for a discussion of possible
problems that can be encountered. These neglected aspects may however be included using the framework
of matrix stability analysis.

For a given temporal and spatial discretization, the matrix stability analysis proceeds by first linearizing the
discretizations about a basic state, and then expressing the resulting set of linear difference equations as
Ax""" = Bx". Here the matrices A and B together define the vertical discretization; X" = [u, v, w, 0, p, n]T is
the transpose of the model’s discrete state vector at time level #; and u = [uy, uy, . . .]T is the vector of values
of u at the set of discrete vertical levels z = z;, z,, ..., with similar definitions for the other model variables
v, w, 0, p and n. The generalized discrete eigenproblem Bx" = JAx" is obtained by setting x"*! = Jx”, and
the discretization is stable provided |4 < 1.

In [40], this framework is used to assess the impact, in a 1D (column model) version of the dynamical core
of [3], of (one- and two-term) extrapolated trajectory schemes on the stability properties of centered SISL
schemes. It is found that, in the absence of any controlling mechanism, both extrapolated trajectory schemes
are unstable. Additionally they can significantly distort the vertical structure of the acoustic modes. Though
not studied there, the analogous distortion of Rossby and gravity waves could be expected to be deleterious to
a forecast model. In contrast, an interpolated trajectory scheme is found to be stable and to accurately capture
the vertical structures of the normal modes.

5. Physics-dynamics coupling

Physics parameterization packages, which model unresolved fluid-dynamical processes together with non-
fluid-dynamical ones, are key elements in the success of numerical weather and climate prediction models. The
accuracy and complexity of these schemes continues to increase apace. Similarly, the accuracy of dynamical
cores has continued to steadily improve. However, a chain is only as strong as its weakest link, e.g. two sec-
ond-order components coupled in a first-order manner imply a first-order model. The link that couples the
physics package to the inviscid, adiabatic dynamical core has received little attention. It is therefore important
for the continued improvement of models that the virtues and vices of the various strategies employed in such
coupling are well understood, and that the vices are addressed.

In numerical models a distinction is usually made between fast and slow timescales because of differing sta-
bility considerations [57-59]. An explicit time discretization generally has the virtue of simplicity. For a slow
timescale process, computational efficiency is usually not hindered by an associated stability-limited timestep
and an O(Af¢) accurate discretization therefore arguably suffices. However, for a fast timescale process, an
explicit time-discretization generally unduly limits the timestep due to an overly-restrictive stability condition.
Therefore a more costly implicit time-discretization is usually adopted. Even so, while this can address the sta-
bility issue, if the resulting discretization is only O(A¢) accurate, then the timestep may still be unduly limited
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due to time truncation error [60]. This motivates an O(A#?)-accurate implicit time discretization of fast
processes.

However, in a model there are several distinct processes (e.g. the dynamical core and each component of the
physics package) each with their own timescale(s). The use of an implicit scheme to solve simultaneously for
the time tendency of the complete model, though appealing, is currently prohibitively expensive, at least in an
operational setting, and is likely to remain so for the foreseeable future. This is because of the expense of solv-
ing a modified Helmholtz problem which consists of contributions from both the dynamics and the physics
package. The solution is to apply some form of splitting in which the time tendency due to the different ele-
ments of a model are evaluated separately, and then combined in some way to generate the complete model
tendency. All operational models employ some form of splitting. The problem is that splitting in general intro-
duces errors additional to the truncation errors associated with each individual process. With large timesteps,
of the size permitted by SISL schemes, such errors can dominate the model error. The question is therefore:
“How to determine the optimal way of performing such splitting?”’

A methodology for analyzing the numerical properties of such splitting schemes is developed in [61,62].
A canonical problem is introduced to idealize both the dynamics (with terms to represent both fast and slow
propagating modes), and the parameterizations of fast and slow, oscillatory and damped, physical processes.
It permits the examination of a broad set of physics—dynamics coupling issues, while keeping the analysis trac-
table. Any given coupling scheme can be assessed in terms of its numerical stability and of the accuracy of
both its transient and steady-state responses. The methodology essentially examines the forced evolution equa-
tion for the amplitude of a normal mode — this again underlines the underpinning importance of normal
modes to understanding the behaviour of numerical schemes.

For the reasons discussed above, fully implicit coupling is impracticable, as is fully explicit coupling due
to timestep restrictions. A popular approach is “split-implicit” coupling in which a dynamics predictor is
followed by a physics corrector. It addresses the stability issue of an explicit coupling while keeping the phys-
ics discretization distinct from the dynamics discretization. However, using the framework of [61,62], it is
found that the steady-state solution is corrupted and the forced response can be spuriously amplified by
an order-of-magnitude. This motivated the “‘symmetrized split-implicit” coupling in which two physics dis-
cretizations are arranged symmetrically around a dynamics sub-step. The analysis shows that this addresses
the stability and accuracy deficiencies of an explicit coupling while still correctly representing the exact
steady-state solution for constant forcing. It also keeps the physics discretization distinct from the dynamics
one. It partially shares the disadvantage of the fully implicit model inasmuch as the second physics sub-step
is an implicit discretization of the highly nonlinear physics. However the usual column-based physical
parameterizations are such that the discrete set of nonlinear equations can be solved column-by-column,
greatly reducing the computational cost.

This early work was done in the context of a physics package comprising only one component. In a typical
model, however, there are at least four distinct components, each with different characteristics. The work of
[63,64] therefore extends the above-described framework to examine the coupling of a mix of physical param-
eterizations of various damping and oscillatory processes associated with a range of timescales. Various cou-
pling strategies were examined therein, but none were found to perform uniformly well leading to only general,
rather than specific, conclusions. For example, two generic splitting schemes were examined: sequential-split-
ting, in which the model’s tendency is updated sequentially using the tendency due to each physics component
in turn; and parallel-splitting, in which the model’s tendency is updated simply by summing, independently,
the tendencies of each physics component. It was found that sequential splitting is more flexible in its ability
to eliminate splitting errors than parallel splitting. A disadvantage is that the sequential approach is sensitive
to the order in which the physics components are applied. In practice a mix of sequential schemes for the fast
timescale physics, and parallel schemes for the slow timescale ones, appears to optimize the overall coupling
strategy. It is then found that the slower processes, such as radiation, should appear near the center of the
timestep, with the faster processes, such as boundary layer diffusion, coupled implicitly at the end of the
timestep.

Following up on this work, idealizations of several specific coupling formulations, considered to be para-
digms of actual approaches used in atmospheric models, were then investigated in [65] with attention focused
on two important properties. These are: (a) the ability to exactly maintain a steady state, since this implies a
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correct balance between the individual physics and dynamics processes, and thereby reduces systematic errors
and biases; and (b) the possibility of achieving second-order accuracy in time. Although none of the operation-
ally-inspired idealizations fully meets both of these evaluation criteria, an idealization of an experimental mul-
tiple-sweep predictor—corrector scheme proposed in [66] does, albeit at additional cost, and has much to
recommend it.

As analyzed in [67,68], incorporation of the parameterized boundary layer vertical diffusion into an atmo-
spheric model can produce spurious two-timestep oscillations in boundary-layer tendencies, and even instabil-
ity, due to the inherently very fast timescales of this physical process. In [69], a generalization of two of the
implicit schemes proposed in [67] to mitigate this behaviour is presented, analyzed and demonstrated by
numerical simulation. It is found that this implicit scheme provides an affordable, stable, and well-behaved
alternative to the prohibitively-expensive strategy of greatly reducing the timestep to be commensurate with
the process timescale. It is also well suited for use as a component of more general predictor—corrector cou-
plings such as those described in [66,70].

The framework of [61,62] can also be used to analyze the problem of spurious computational resonance in a
SISL model. Traditionally, this has arisen in the presence of stationary spatial forcing, specifically that due to
orography [45]. In this case, spurious resonance is absent when a Courant number restriction on timestep is
satisfied. It is shown in [61] that time-dependent forcing, such as that due to the physics package, can also give
rise to spurious resonance. Importantly though, the Courant number limitation on the timestep is then twice
as restrictive as that for stationary forcing, thereby exacerbating the problem of spurious computational res-
onance with long timesteps.

6. Conclusion

A unified approach to NWP and climate modeling for multiscale applications implies a strong constraint on
the design of a dynamical core. Recent research at the Met Office on a number of such dynamical core issues
has been reviewed herein. These include the following:

e The continuous system requires consideration of a suitable equation set and vertical coordinate. Inter alia,
these, together with the boundary conditions, determine the energetics of the system that is to be simulated
numerically.

e The temporal discretization determines the stability and efficiency of the scheme. The semi-implicit method,
when coupled with a semi-Lagrangian scheme, is a proven approach. However, a regularized, time-stag-
gered method, again when coupled to a semi-Lagrangian scheme, presents an interesting and plausible
alternative.

e The semi-Lagrangian method itself presents challenges with regard to preserving accurately any of the con-
servation aspects of the underlying equations. There are also underlying issues of stability and accuracy
associated with the departure-point computation — a key element of the semi-Lagrangian approach.

e As well as the temporal discretization, the spatial discretization is of course also fundamental to the per-
formance of the model.

e Finally (at least within the terms of this review!), the coupling of the dynamical core with the physical
parameterizations is becoming increasingly recognized as potentially a limiting factor, for given computa-
tional effort, to improving the accuracy of an NWP/climate model.
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